Amalgamated Worksheet # 2 Solutions

Various Artists

April 10, 2013

1 Peyam Tabrizian

Problem 1:

Find T € L (R3) whose characteristic polynomial and minimal polynomial are not
the same

Solution: Let T'= I (that is T'(x,y,2) = (z,y, 2))

Then T has only one eigenvalue 1 with multiplicity 3, so the characteristic polynomial
of Tis|p(z) = (z — 1)3

But since T' = I, we know T'— I = 0, so the minimal polynomial ¢ of T" divides z — 1.

nd of least degree, it follows that

Since ¢ is monic (i.e. it’s leading coefficient is 1) a
1 (if ¢ has degree 0).

either ¢(z) = z — 1 (if ¢ has degree 1) or ¢(z) =

However, if ¢(z) = 1, then we would have 0 = ¢(T') = I so 0 = I, which is a contra-
diction.!

It follows that the minimal polynomial of 7" is |¢(z) = z — 1|, which is different from
p(z) = (z = 1)° O

'Remember this type of argument, it’s very typical minimal polynomial argument



Problem 2:
Find all 2 x 2 matrices A such that A2 — 34 +21 =0

Hint: You may use the following result: If R? has a basis of eigenvectors of A, then
there exists a matrix P such that A = PDP~! where D is the matrix of eigenvalues
of A

Solution: Let ¢(z) be the minimal polynomial of A.
Since A% — 3A + 21 = 0, we know that ¢(z) divides 2 — 3z +2 = (2 — 1)(z — 2).

Since ¢ is monic of least degree, we have three cases:
Case 1: q(z) =z —1

Then by definition ¢(T)) = A — I =0, so in this case

Case 2: q(2) =2z —2

Then by definition ¢(7) = A — 21 =0, so
Case 3: q(2) = (2 —1)(2 — 2)

Then because the roots of ¢ are the eigenvalues of A, it follows that A has two dis-
tinct eigenvalues A = 1 and A = 2, hence R? has a basis of eigenvectors of A, namely
(v1,v9), where vy is a nonzero eigenvector corresponding to A = 1 and vy is a nonzero
eigenvector corresponding to A\ = 2

By the hint above, it follows that there exists a matrix P such that |A = PDP~!

1
where D = [0 9

satisfies A2 —3A4 + 21 = 0.

} , and you can also check that any matrix A of this form actually

Answer: A=1,A=2],or A= PDP~! where D = [é g]

Problem 3:
If dim(V) =n < oo, and T € L(V) show that:



dim(Span{[,T,TQ,---}) <n

Solution: Let p(z) = a9+ a1z + - - - + a,2™ be the characteristic polynomial of 7.
Then by the Cayley-Hamilton theorem:
apl +aT+---+a, 7" =0

Let k be the largest index such that a; # 0, then we get:

agl + -+ + a;T" =0

apTF = —agl — -+ — ap_TF !
Qo a1 Al—1 fo
TF = — 2] — =7 — ... fpk-l
Qg ag Qg

It follows that:

T" € Span {1,T,--- . T*'} (%)
Let’s show by induction on i that 7% € Span {I,T,--- ,T**} (wherei=0,1,---)?

Base case: The case ¢ = 0 follows from (x)

Induction step: Suppose T**% € Span {], T, - ,kal}, that is:

TF = bl + 0T+ -+ by TF!

for some constants bg, - - -, bp_1.
Then applying T' to the above equation, we get:

THEF = bT + by T2 + -+ + by o TF + by TF

Now boT'+- - ++by_oT* ' € Span {I,T,--- ,T*'}. But by (*), we also have b,_T" €
Span {I,T,--- ,T* 7}, and therefore T* € Span {I,T,--- , T*} (being the sum
of two vectors in that span) [

Hence, by what we’ve just shown, it follows that:

Span{1,T,T%---} = Span {I,T,--- , T"'}
And hence:

2That is, higher powers of T still lie in the same span!




dim (Span {],T,T2,~--}) = dim (Span {],T,--- ,Tk_l}) <k<n=dm(V)

Problem 4:

Find a formula for 7! in terms of the coefficients of the characteristic polynomial of T'

Solution: If p(z) = ag + a1z + - - - + a, 2" is the characteristic polynomial of T, then
by the Cayley-Hamilton theorem, we get:

aol +aT---+a,T" =0
That is, agl = —a; T — - -+ — a,T™.

Now applying 7! to this equation, we get:

acTt=—ay ] —asT — -+ —a, Tt
Now if ay # 0, we would get:

_ a a2 a _
Tt - =] - =T —...- 2t
Qo Qo Qo

and we would be done!

However, if ag = 0, then p(0) = ag + @10+ - - - + a,0" = ap = 0, so p(0) = 0, hence 0
is an eigenvalue of T' (by definition of the characteristic polymomial), hence T" is not
invertible, which is a contradiction with the fact that we assumed T is invertible!

Problem 5:

(if time permits) Given v € V| a polynomial g is called the T—annihilator of v (or
T—killer of v) if ¢g(t) is a monic polynomial of least degree such that g(T")v = 0.

Show that such a g divides the minimal polynomial g of T’



Solution: Let p be the characteristic polynomial of T'.

Then by the division algorithm for polynomials (Theorem 4.5 on page 66), we know
that there exist polynomials s and r with deg(r) < deg(g) such that:

q(2) = 9(2)s(2) +7(2) = s(2)g(2) +1(2)

But then replacing z by T in the above equation and using the fact that ¢(7") = 0
(since ¢ is the minimal polynomial of T'), we get:

0=s(T)g(T)+r(T)
Now applying this equation to v and using g(T)v = 0, we get:

0=s(T)g(T)(v) +r(T)v=s(T)0+r(T)v=r(T)v

Hence (T)v = 0 (so r satisfies the same properties as the T-annihilator of V). How-
ever, since g is of least degree and deg(r) < deg(g), it follows that r(z) =0

But then from ¢(z) = g(z)s(z) +r(z), we get that ¢(z) = g(2)s(z), which means that

[ divides o :

Problem 6:

(if time permits) Find an (infinite-dimensional) vector space V' and a linear operator
D € £(V') with no minimal polynomial.

Solution: Let V' = P(R) (the space of polynomials), and define D(p) = p'.
Now suppose that there exists a minimal polynomial ¢(z) = ag+a12+- - -+a,z" of D.
Then by definition of a minimal polynomial, we would have:

q¢(D) =aol +a,D+ -+ +a,_ D" '+ D" =0

That is, for every polynomial p, we would have:

0= (CLQI+CL1D+--~—|—Dn)p:a0p+a1p’_|_...+p(”)
But choosing p(z) = 2™ € V, we get that:

0= apz" +anz" 4 - 4+ nl

3Remember this argument, it’s a classical example of a division-algorithm question!



Plugging in z = 0, we get that:

which is a contradiction. O

2 Daniel Sparks

Let T be a nilpotent operator, upper triangular with respect to the basis § =
{v1,-++ ,v.}. Let V; = Span{v; - - -v,} and V; = (0).

(a) Show that T%(V;) = (0).

Solution # 1 (Yuval Gannot): V; is T-invariant by Proposition 5.12. Then Ty,
is nilpotent on an i-dimensional vector space, so T%(V;) = 0.

In detail, notice that T™(v) = T™ Ty, (v)) = T™2((T|y;)*(v)) = - - = (T|y;)™(v)
for v € V;. Hence (T|y,)"(v) = T™(v) = 0, so Ty, is nilpotent. Hence by Corollary
8.8, T"(v) = (T|v;)"(v) = 0 for v € V;, i.e. T"(V;) = (0). O

Since M (T, 3) (the matrix of T with respect to ) is upper triangular, the entries
on the main diagonal are the eigenvalues by Proposition 5.18. Since T is nilpotent,
it’s only eigenvalue is 0. [Tv = A = T"v = \"v = 0 = XA = 0.] Hence M(T, ) is
actually strictly upper triangular:

0 Q12 G133 - Qinp

0 0 ayz -+ agp
M(T,B) = 0 0 0 - azy

0 O 0o --- 0

The following is a fundamental observation.
Lemma: T(V;) C V;_;.

Proof: Let n >4 > 0. Let v = ajv1+- - -+a;v; € V;. Writeu = a;v1+---+a;,_1v;_1 €
Vi1, so that v = u + a;v;. Then T'(v) = T'(u) + aT(v;). Since V;_; is T-invariant,
T'(u) € Vi_1, and by the matrix displayed above, T'(v;) = a1 01+ - -+a;—1,;vi—1 € Vi_1.
Therefore T'(v) is a linear combination of vectors in V;_;, and hence is also. O

Solution # 2: Special case of (b), below.

Solution # 3: First, T°(V5) = 1d((0)) = (0). [For a less pathological base case, no-
tice T'(V1) = (0) since v; is an eigenvector with eigenvalues 0.] Now, suppose as induc-



tive hypothesis that T%(V;) = (0) and that ¢ < n. Then Tt (V1) = THT(Viy1)) C
T'(V;) = (0). The only subspace of (0) is (0), so we’re done. O

Solution # 4: T'(V;) = TY(T(V})) € T (Viiy) = T 2T(Vi_y) € T 2(Viey) C
-~ CT(Vh) C Vo= (0). [This is a less rigorous version of # 3.]

What this means in terms of the matrix of 7% is that the first ¢ columns are all zero.
(b) Show that T"(V;) C V;_;.

Solution: Let 1 < j < n be arbitrary and induct on ¢. The base case is © = 1
which is exactly the lemma above. Suppose T%(V;) C V;_;, and that i < n. Then
THYV;) = T(TY(V;)) € T(Vj—i) C Vj—i—1 = Vj_(i4+1). The first containment comes
from the inductive hypothesis and the second from another use of the lemma.

What this means in terms of the matrix of 7" is that it has zeros on and below the
i-th diagonal. (The k-th column is T%(v;,) which is a linear combination of vy - - - , vg_;.
That means that the only nonzero entries a;; occur when j < k — 4, i.e. when the
row is ¢ entries higher than the column.)

(c) Let M be strictly upper-triangular and n x n. Define an operator F — F" to be
the operator whose matrix (with respect to the standard basis) is M. We claim that
M is nilpotent.

If F = C, this is automatic, since the only eigenvalue is 0, and all such operators on
C" are nilpotent. (However, one can prove it in general in various ways E.g., define
Vi = Span(ey, - - - , €;) as above and show that T'(V;) C V;_1, hence T"(V) = T™(V,,) C
(0) by reasoning identical to that in (a).)

Hence the analysis in (b) applies to our operator, and in fact the observation about the
form of the matrix for 7% in (b) applies exactly to give us what we want. Composing
operators corresponds to multiplying matrices, so M* has zeros on and below the i-th
diagonal.

Note in particular that M"™ = 0, as expected.

(d) Let A, B be block diagonal matrices with blocks of matching size:

A, 0 -+ 0 B, 0 --- 0
0 A, --- 0 0 By --- 0
A= . . . |.B= . .
0 0o --- A, 0 0 --- B,

Suppose that there are only two blocks in each matrix, i.e. n = 2. Let Ty and Tg be
operators whose matrices are A and B, respectively, with respect to the same basis



~v. Suppose Ay is m x m and that As is k X k. Hence v has m + k vectors in it, which
we name: ¥ = {vy - Uy, Wy + -+, Wi}

Consider the composition (T4 o Tg). Since V = Span(vy,- -+ ,vy,) is both T4 and
Ty invariant, it is (T4 o Tp) invariant as well. The same goes for the subspace
W = Span(wy, - -+ ,wg). Hence AB, which is the matrix of T4 o T, is block diagonal
with blocks of size m and k as well.

Now, if we restrict the operator Ty to V', we simply get T'4,. Similarly, Tz restricts
to V giving Tpg,. Since T4, T, = Ta,B,, we see that TxTp restricts to V as T, p,.
This means that the first block in TxTp is A;B;. Similarly, T4Tg restricts to W as

T'x,p, implying that the second block is A;By. Hence ( A0 ) ( By 0 ) =

0 A, 0 By
A1 By 0
0  ABy )

One could expand the above proof to the case of many subspaces. Instead, use it as a
base case for an induction. Now suppose that the result is true for n. Let A, B be in
the above form but with n + 1 blocks along the diagonal. Notice that we can group
this in the following way:

Al ce B1
A2 ce B2
An R Bn
n+1 Bn+1

Therefore, the base case implies that this product is
A, e B,
Ay .- Bs
A, ... B,
An+1Bn+1

and now the inductive hypothesis, applied to the upper left block (which is a product
of two block diagonal matrices with n blocks), gives the desired product

AlBl
AQBQ
An+1 Bn+1

(e) Let L be an operator on a complex space V' of dimension n. Let V = Uy, &- - -®U,,,
be the generalized eigenspace decomposition promised by the Jordan theorem. Write



e; = dimU,,. If we concatenate bases from each U, to form a basis for V', we have
the “weak” Jordan form consisting of a matrix M which is block diagonal with m
blocks. Each block M; is upper triangular with \; on the diagonal.

Now consider the matrix product
« (M — X\ D) (M — N\, 1)

By part (d) we can consider this product one block at a time. That is, the above
product (*) is block diagonal with m blocks. The i-th block is

% 3k (Mz —>\1[)61 (MZ —)\Z’I)ei (Mz —/\nI)En

But notice that M; — \;I is strictly upper triangular of size e; x e;. It follows from
(c) that (M; — A\;I)% = 0. Hence the entire product (**) is 0.

This is true for each of the blocks in (*), so the entire product is 0.



