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1 Peyam Tabrizian

Problem 1:

Find T ∈ L (R3) whose characteristic polynomial and minimal polynomial are not
the same

Solution: Let T = I (that is T (x, y, z) = (x, y, z))

Then T has only one eigenvalue 1 with multiplicity 3, so the characteristic polynomial

of T is p(z) = (z − 1)3

But since T = I, we know T − I = 0, so the minimal polynomial q of T divides z− 1.

Since q is monic (i.e. it’s leading coefficient is 1) and of least degree, it follows that
either q(z) = z − 1 (if q has degree 1) or q(z) = 1 (if q has degree 0).

However, if q(z) = 1, then we would have 0 = q(T ) = I so 0 = I, which is a contra-
diction.1

It follows that the minimal polynomial of T is q(z) = z − 1 , which is different from

p(z) = (z − 1)3

1Remember this type of argument, it’s very typical minimal polynomial argument
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Problem 2:

Find all 2× 2 matrices A such that A2 − 3A+ 2I = 0

Hint: You may use the following result: If R2 has a basis of eigenvectors of A, then
there exists a matrix P such that A = PDP−1, where D is the matrix of eigenvalues
of A

Solution: Let q(z) be the minimal polynomial of A.

Since A2 − 3A+ 2I = 0, we know that q(z) divides z2 − 3z + 2 = (z − 1)(z − 2).

Since q is monic of least degree, we have three cases:
Case 1: q(z) = z − 1

Then by definition q(T ) = A− I = 0, so in this case A = I

Case 2: q(z) = z − 2

Then by definition q(T ) = A− 2I = 0, so A = 2I

Case 3: q(z) = (z − 1)(z − 2)

Then because the roots of q are the eigenvalues of A, it follows that A has two dis-
tinct eigenvalues λ = 1 and λ = 2, hence R2 has a basis of eigenvectors of A, namely
(v1, v2), where v1 is a nonzero eigenvector corresponding to λ = 1 and v2 is a nonzero
eigenvector corresponding to λ = 2

By the hint above, it follows that there exists a matrix P such that A = PDP−1

where D =

[
1 0
0 2

]
, and you can also check that any matrix A of this form actually

satisfies A2 − 3A+ 2I = 0.

Answer: A = I, A = 2I, or A = PDP−1, where D =

[
1 0
0 2

]

Problem 3:

If dim(V ) = n <∞, and T ∈ L(V ) show that:



dim
(
Span

{
I, T, T 2, · · ·

})
< n

Solution: Let p(z) = a0 + a1z + · · ·+ anz
n be the characteristic polynomial of T .

Then by the Cayley-Hamilton theorem:

a0I + a1T + · · ·+ anT
n = 0

Let k be the largest index such that ak 6= 0, then we get:

a0I + · · ·+ akT
k =0

akT
k =− a0I − · · · − ak−1T k−1

T k =− a0
ak
I − a1

ak
T − · · · − ak−1

ak
T k−1

It follows that:

T k ∈ Span
{
I, T, · · · , T k−1

}
(∗)

Let’s show by induction on i that T k+i ∈ Span
{
I, T, · · · , T k−1

}
(where i = 0, 1, · · · )2

Base case: The case i = 0 follows from (∗)

Induction step: Suppose T k+i ∈ Span
{
I, T, · · · , T k−1

}
, that is:

T k+i = b0I + b1T + · · ·+ bk−1T
k−1

for some constants b0, · · · , bk−1.

Then applying T to the above equation, we get:

T k+i+1 = b0T + b1T
2 + · · ·+ bk−2T

k−1 + bk−1T
k

Now b0T+· · ·+bk−2T k−1 ∈ Span
{
I, T, · · · , T k−1

}
. But by (∗), we also have bk−1T

k ∈
Span

{
I, T, · · · , T k−1

}
, and therefore T k+i+1 ∈ Span

{
I, T, · · · , T k−1

}
(being the sum

of two vectors in that span)

Hence, by what we’ve just shown, it follows that:

Span
{
I, T, T 2, · · ·

}
= Span

{
I, T, · · · , T k−1

}
And hence:

2That is, higher powers of T still lie in the same span!



dim
(
Span

{
I, T, T 2, · · ·

})
= dim

(
Span

{
I, T, · · · , T k−1

})
≤ k ≤ n = dim(V )

Problem 4:

Find a formula for T−1 in terms of the coefficients of the characteristic polynomial of T

Solution: If p(z) = a0 + a1z + · · ·+ anz
n is the characteristic polynomial of T , then

by the Cayley-Hamilton theorem, we get:

a0I + a1T · · ·+ anT
n = 0

That is, a0I = −a1T − · · · − anT n.

Now applying T−1 to this equation, we get:

a0T
−1 = −a1I − a2T − · · · − anT n−1

Now if a0 6= 0, we would get:

T−1 − a1
a0
I − a2

a0
T − · · · − an

a0
T n−1

and we would be done!

However, if a0 = 0, then p(0) = a0 + a10 + · · ·+ an0n = a0 = 0, so p(0) = 0, hence 0
is an eigenvalue of T (by definition of the characteristic polymomial), hence T is not
invertible, which is a contradiction with the fact that we assumed T is invertible!

Problem 5:

(if time permits) Given v ∈ V , a polynomial g is called the T−annihilator of v (or
T−killer of v) if g(t) is a monic polynomial of least degree such that g(T )v = 0.

Show that such a g divides the minimal polynomial q of T



Solution: Let p be the characteristic polynomial of T .

Then by the division algorithm for polynomials (Theorem 4.5 on page 66), we know
that there exist polynomials s and r with deg(r) < deg(g) such that:

q(z) = g(z)s(z) + r(z) = s(z)g(z) + r(z)

But then replacing z by T in the above equation and using the fact that q(T ) = 0
(since q is the minimal polynomial of T ), we get:

0 = s(T )g(T ) + r(T )

Now applying this equation to v and using g(T )v = 0, we get:

0 = s(T )g(T )(v) + r(T )v = s(T )0 + r(T )v = r(T )v

Hence r(T )v = 0 (so r satisfies the same properties as the T -annihilator of V ). How-
ever, since g is of least degree and deg(r) < deg(g), it follows that r(z) = 0

But then from q(z) = g(z)s(z) + r(z), we get that q(z) = g(z)s(z), which means that

g divides q 3

Problem 6:

(if time permits) Find an (infinite-dimensional) vector space V and a linear operator
D ∈ L(V ) with no minimal polynomial.

Solution: Let V = P(R) (the space of polynomials), and define D(p) = p′.

Now suppose that there exists a minimal polynomial q(z) = a0+a1z+ · · ·+anzn of D.

Then by definition of a minimal polynomial, we would have:

q(D) = a0I + a1D + · · ·+ +an−1D
n−1 +Dn = 0

That is, for every polynomial p, we would have:

0 = (a0I + a1D + · · ·+Dn)p = a0p+ a1p
′ + · · ·+ p(n)

But choosing p(z) = zn ∈ V , we get that:

0 = a0z
n + a1nz

n+1 + · · ·+ n!

3Remember this argument, it’s a classical example of a division-algorithm question!



Plugging in z = 0, we get that:

0 = n!

which is a contradiction.

2 Daniel Sparks

Let T be a nilpotent operator, upper triangular with respect to the basis β =
{v1, · · · , vn}. Let Vi = Span{v1 · · · vn} and V0 = (0).

(a) Show that T i(Vi) = (0).

Solution # 1 (Yuval Gannot): Vi is T -invariant by Proposition 5.12. Then T |Vi
is nilpotent on an i-dimensional vector space, so T i(Vi) = 0.

In detail, notice that Tm(v) = Tm−1(T |Vi(v)) = Tm−2((T |Vi)2(v)) = · · · = (T |Vi)m(v)
for v ∈ Vi. Hence (T |Vi)n(v) = T n(v) = 0, so T |Vi is nilpotent. Hence by Corollary
8.8, T i(v) = (T |Vi)i(v) = 0 for v ∈ Vi, i.e. T i(Vi) = (0). �

Since M(T, β) (the matrix of T with respect to β) is upper triangular, the entries
on the main diagonal are the eigenvalues by Proposition 5.18. Since T is nilpotent,
it’s only eigenvalue is 0. [Tv = λv ⇒ T nv = λnv = 0 ⇒ λ = 0.] Hence M(T, β) is
actually strictly upper triangular:

M(T, β) =


0 a1,2 a1,3 · · · a1,n
0 0 a2,3 · · · a2,n
0 0 0 · · · a3,n
...

...
...

...
0 0 0 · · · 0


The following is a fundamental observation.

Lemma: T (Vi) ⊂ Vi−1.

Proof: Let n ≥ i > 0. Let v = a1v1+· · ·+aivi ∈ Vi. Write u = a1v1+· · ·+ai−1vi−1 ∈
Vi−1, so that v = u + aivi. Then T (v) = T (u) + aT (vi). Since Vi−1 is T -invariant,
T (u) ∈ Vi−1, and by the matrix displayed above, T (vi) = a1,iv1+· · ·+ai−1,ivi−1 ∈ Vi−1.
Therefore T (v) is a linear combination of vectors in Vi−1, and hence is also. �

Solution # 2: Special case of (b), below.

Solution # 3: First, T 0(V0) = Id((0)) = (0). [For a less pathological base case, no-
tice T (V1) = (0) since v1 is an eigenvector with eigenvalues 0.] Now, suppose as induc-



tive hypothesis that T i(Vi) = (0) and that i < n. Then T i+1(Vi+1) = T i(T (Vi+1)) ⊂
T i(Vi) = (0). The only subspace of (0) is (0), so we’re done. �

Solution # 4: T i(Vi) = T i−1(T (Vi)) ⊂ T i−1(Vi−1) = T i−2T (Vi−1) ⊂ T i−2(Vi−2) ⊂
· · · ⊂ T (V1) ⊂ V0 = (0). [This is a less rigorous version of # 3.]

What this means in terms of the matrix of T i is that the first i columns are all zero.
(b) Show that T i(Vj) ⊂ Vj−i.

Solution: Let 1 ≤ j ≤ n be arbitrary and induct on i. The base case is i = 1
which is exactly the lemma above. Suppose T i(Vj) ⊂ Vj−i, and that i < n. Then
T i+1(Vj) = T (T i(Vj)) ⊂ T (Vj−i) ⊂ Vj−i−1 = Vj−(i+1). The first containment comes
from the inductive hypothesis and the second from another use of the lemma.

What this means in terms of the matrix of T i is that it has zeros on and below the
i-th diagonal. (The k-th column is T i(vk) which is a linear combination of v1 · · · , vk−i.
That means that the only nonzero entries aj,k occur when j ≤ k − i, i.e. when the
row is i entries higher than the column.)

(c) Let M be strictly upper-triangular and n× n. Define an operator Fn → Fn to be
the operator whose matrix (with respect to the standard basis) is M . We claim that
M is nilpotent.

If F = C, this is automatic, since the only eigenvalue is 0, and all such operators on
Cn are nilpotent. (However, one can prove it in general in various ways E.g., define
Vi = Span(e1, · · · , ei) as above and show that T (Vi) ⊂ Vi−1, hence T n(V ) = T n(Vn) ⊂
(0) by reasoning identical to that in (a).)

Hence the analysis in (b) applies to our operator, and in fact the observation about the
form of the matrix for T i in (b) applies exactly to give us what we want. Composing
operators corresponds to multiplying matrices, so M i has zeros on and below the i-th
diagonal.

Note in particular that Mn = 0, as expected.

(d) Let A,B be block diagonal matrices with blocks of matching size:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
...

0 0 · · · An

 , B =


B1 0 · · · 0
0 B2 · · · 0
...

...
...

0 0 · · · Bn


.

Suppose that there are only two blocks in each matrix, i.e. n = 2. Let TA and TB be
operators whose matrices are A and B, respectively, with respect to the same basis



γ. Suppose A1 is m×m and that A2 is k× k. Hence γ has m+ k vectors in it, which
we name: γ = {v1 · · · vm, w1 · · · , wk}.

Consider the composition (TA ◦ TB). Since V = Span(v1, · · · , vm) is both TA and
TB invariant, it is (TA ◦ TB) invariant as well. The same goes for the subspace
W = Span(w1, · · · , wk). Hence AB, which is the matrix of TA ◦ TB, is block diagonal
with blocks of size m and k as well.

Now, if we restrict the operator TA to V , we simply get TA1 . Similarly, TB restricts
to V giving TB1 . Since TA1TB1 = TA1B1 , we see that TATB restricts to V as TA1B1 .
This means that the first block in TATB is A1B1. Similarly, TATB restricts to W as

TA2B2 implying that the second block is A2B2. Hence

(
A1 0
0 A2

)(
B1 0
0 B2

)
=(

A1B1 0
0 A2B2

)
.

One could expand the above proof to the case of many subspaces. Instead, use it as a
base case for an induction. Now suppose that the result is true for n. Let A,B be in
the above form but with n + 1 blocks along the diagonal. Notice that we can group
this in the following way:


A1 · · ·

A2 · · ·
...

...
...

· · · An


An+1






B1 · · ·

B2 · · ·
...

...
...

· · · Bn


Bn+1


Therefore, the base case implies that this product is


A1 · · ·

A2 · · ·
...

...
...

· · · An




B1 · · ·
B2 · · ·

...
...

...
· · · Bn


An+1Bn+1


and now the inductive hypothesis, applied to the upper left block (which is a product
of two block diagonal matrices with n blocks), gives the desired product

A1B1 · · ·
A2B2 · · ·

...
...

...
· · · An+1Bn+1


(e) Let L be an operator on a complex space V of dimension n. Let V = Uλ1⊕· · ·⊕Uλm
be the generalized eigenspace decomposition promised by the Jordan theorem. Write



ei = dimUλi . If we concatenate bases from each Uλ to form a basis for V , we have
the “weak” Jordan form consisting of a matrix M which is block diagonal with m
blocks. Each block Mi is upper triangular with λi on the diagonal.

Now consider the matrix product

∗(M − λ1I)e1 · · · (M − λnI)en

By part (d) we can consider this product one block at a time. That is, the above
product (*) is block diagonal with m blocks. The i-th block is

∗ ∗ (Mi − λ1I)e1 · · · (Mi − λiI)ei · · · (Mi − λnI)en

But notice that Mi − λiI is strictly upper triangular of size ei × ei. It follows from
(c) that (Mi − λiI)ei = 0. Hence the entire product (**) is 0.

This is true for each of the blocks in (*), so the entire product is 0.


