Amalgamated Worksheet \# 2 Solutions

Various Artists

April 10, 2013

1 Peyam Tabrizian

Problem 1:

Find $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ whose characteristic polynomial and minimal polynomial are not the same

Solution: Let $T=I($ that is $T(x, y, z)=(x, y, z))$
Then T has only one eigenvalue 1 with multiplicity 3 , so the characteristic polynomial of T is $p(z)=(z-1)^{3}$

But since $T=I$, we know $T-I=0$, so the minimal polynomial q of T divides $z-1$.
Since q is monic (i.e. it's leading coefficient is 1) and of least degree, it follows that either $q(z)=z-1$ (if q has degree 1) or $q(z)=1$ (if q has degree 0).

However, if $q(z)=1$, then we would have $0=q(T)=I$ so $0=I$, which is a contradiction. ${ }^{1}$

It follows that the minimal polynomial of T is $q(z)=z-1$, which is different from $p(z)=(z-1)^{3}$

[^0]
Problem 2:

Find all 2×2 matrices A such that $A^{2}-3 A+2 I=0$
Hint: You may use the following result: If \mathbb{R}^{2} has a basis of eigenvectors of A, then there exists a matrix P such that $A=P D P^{-1}$, where D is the matrix of eigenvalues of A

Solution: Let $q(z)$ be the minimal polynomial of A.
Since $A^{2}-3 A+2 I=0$, we know that $q(z)$ divides $z^{2}-3 z+2=(z-1)(z-2)$.
Since q is monic of least degree, we have three cases:
Case 1: $q(z)=z-1$
Then by definition $q(T)=A-I=0$, so in this case $A=I$
Case 2: $q(z)=z-2$
Then by definition $q(T)=A-2 I=0$, so $A=2 I$
Case 3: $q(z)=(z-1)(z-2)$
Then because the roots of q are the eigenvalues of A, it follows that A has two distinct eigenvalues $\lambda=1$ and $\lambda=2$, hence \mathbb{R}^{2} has a basis of eigenvectors of A, namely $\left(v_{1}, v_{2}\right)$, where v_{1} is a nonzero eigenvector corresponding to $\lambda=1$ and v_{2} is a nonzero eigenvector corresponding to $\lambda=2$

By the hint above, it follows that there exists a matrix P such that $A=P D P^{-1}$ where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, and you can also check that any matrix A of this form actually satisfies $A^{2}-3 A+2 I=0$.

Answer: $A=I, A=2 I$, or $A=P D P^{-1}$, where $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Problem 3:

If $\operatorname{dim}(V)=n<\infty$, and $T \in \mathcal{L}(V)$ show that:

$$
\operatorname{dim}\left(\operatorname{Span}\left\{I, T, T^{2}, \cdots\right\}\right)<n
$$

Solution: Let $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ be the characteristic polynomial of T.
Then by the Cayley-Hamilton theorem:

$$
a_{0} I+a_{1} T+\cdots+a_{n} T^{n}=0
$$

Let k be the largest index such that $a_{k} \neq 0$, then we get:

$$
\begin{aligned}
a_{0} I+\cdots+a_{k} T^{k} & =0 \\
a_{k} T^{k} & =-a_{0} I-\cdots-a_{k-1} T^{k-1} \\
T^{k} & =-\frac{a_{0}}{a_{k}} I-\frac{a_{1}}{a_{k}} T-\cdots-\frac{a_{k-1}}{a_{k}} T^{k-1}
\end{aligned}
$$

It follows that:

$$
\begin{equation*}
T^{k} \in \operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\} \tag{*}
\end{equation*}
$$

Let's show by induction on i that $T^{k+i} \in \operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}(\text { where } i=0,1, \cdots)^{2}$
Base case: The case $i=0$ follows from $(*)$
$\underline{\text { Induction step: }}$ Suppose $T^{k+i} \in \operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}$, that is:

$$
T^{k+i}=b_{0} I+b_{1} T+\cdots+b_{k-1} T^{k-1}
$$

for some constants b_{0}, \cdots, b_{k-1}.
Then applying T to the above equation, we get:

$$
T^{k+i+1}=b_{0} T+b_{1} T^{2}+\cdots+b_{k-2} T^{k-1}+b_{k-1} T^{k}
$$

Now $b_{0} T+\cdots+b_{k-2} T^{k-1} \in \operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}$. But by $(*)$, we also have $b_{k-1} T^{k} \in$ $\operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}$, and therefore $T^{k+i+1} \in \operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}$ (being the sum of two vectors in that span)

Hence, by what we've just shown, it follows that:

$$
\operatorname{Span}\left\{I, T, T^{2}, \cdots\right\}=\operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}
$$

And hence:
${ }^{2}$ That is, higher powers of T still lie in the same span!

$$
\operatorname{dim}\left(\operatorname{Span}\left\{I, T, T^{2}, \cdots\right\}\right)=\operatorname{dim}\left(\operatorname{Span}\left\{I, T, \cdots, T^{k-1}\right\}\right) \leq k \leq n=\operatorname{dim}(V)
$$

Problem 4:

Find a formula for T^{-1} in terms of the coefficients of the characteristic polynomial of T

Solution: If $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ is the characteristic polynomial of T, then by the Cayley-Hamilton theorem, we get:

$$
a_{0} I+a_{1} T \cdots+a_{n} T^{n}=0
$$

That is, $a_{0} I=-a_{1} T-\cdots-a_{n} T^{n}$.
Now applying T^{-1} to this equation, we get:

$$
a_{0} T^{-1}=-a_{1} I-a_{2} T-\cdots-a_{n} T^{n-1}
$$

Now if $a_{0} \neq 0$, we would get:

$$
T^{-1}-\frac{a_{1}}{a_{0}} I-\frac{a_{2}}{a_{0}} T-\cdots-\frac{a_{n}}{a_{0}} T^{n-1}
$$

and we would be done!

However, if $a_{0}=0$, then $p(0)=a_{0}+a_{1} 0+\cdots+a_{n} 0^{n}=a_{0}=0$, so $p(0)=0$, hence 0 is an eigenvalue of T (by definition of the characteristic polymomial), hence T is not invertible, which is a contradiction with the fact that we assumed T is invertible!

Problem 5:

(if time permits) Given $v \in V$, a polynomial g is called the T-annihilator of v (or T-killer of v) if $g(t)$ is a monic polynomial of least degree such that $g(T) v=0$.

Show that such a g divides the minimal polynomial q of T

Solution: Let p be the characteristic polynomial of T.
Then by the division algorithm for polynomials (Theorem 4.5 on page 66), we know that there exist polynomials s and r with $\operatorname{deg}(r)<\operatorname{deg}(g)$ such that:

$$
q(z)=g(z) s(z)+r(z)=s(z) g(z)+r(z)
$$

But then replacing z by T in the above equation and using the fact that $q(T)=0$ (since q is the minimal polynomial of T), we get:

$$
0=s(T) g(T)+r(T)
$$

Now applying this equation to v and using $g(T) v=0$, we get:

$$
0=s(T) g(T)(v)+r(T) v=s(T) 0+r(T) v=r(T) v
$$

Hence $r(T) v=0$ (so r satisfies the same properties as the T-annihilator of V). However, since g is of least degree and $\operatorname{deg}(r)<\operatorname{deg}(g)$, it follows that $r(z)=0$

But then from $q(z)=g(z) s(z)+r(z)$, we get that $q(z)=g(z) s(z)$, which means that g divides ${ }^{3}{ }^{3}$

Problem 6:

(if time permits) Find an (infinite-dimensional) vector space V and a linear operator $D \in \mathcal{L}(V)$ with no minimal polynomial.

Solution: Let $V=\mathcal{P}(\mathbb{R})$ (the space of polynomials), and define $D(p)=p^{\prime}$.
Now suppose that there exists a minimal polynomial $q(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ of D.
Then by definition of a minimal polynomial, we would have:

$$
q(D)=a_{0} I+a_{1} D+\cdots++a_{n-1} D^{n-1}+D^{n}=0
$$

That is, for every polynomial p, we would have:

$$
0=\left(a_{0} I+a_{1} D+\cdots+D^{n}\right) p=a_{0} p+a_{1} p^{\prime}+\cdots+p^{(n)}
$$

But choosing $p(z)=z^{n} \in V$, we get that:

$$
0=a_{0} z^{n}+a_{1} n z^{n+1}+\cdots+n!
$$

[^1]Plugging in $z=0$, we get that:

$$
0=n!
$$

which is a contradiction.

2 Daniel Sparks

Let T be a nilpotent operator, upper triangular with respect to the basis $\beta=$ $\left\{v_{1}, \cdots, v_{n}\right\}$. Let $V_{i}=\operatorname{Span}\left\{v_{1} \cdots v_{n}\right\}$ and $V_{0}=(0)$.
(a) Show that $T^{i}\left(V_{i}\right)=(0)$.

Solution \# 1 (Yuval Gannot): V_{i} is T-invariant by Proposition 5.12. Then $\left.T\right|_{V_{i}}$ is nilpotent on an i-dimensional vector space, so $T^{i}\left(V_{i}\right)=0$.

In detail, notice that $T^{m}(v)=T^{m-1}\left(\left.T\right|_{V_{i}}(v)\right)=T^{m-2}\left(\left(\left.T\right|_{V_{i}}\right)^{2}(v)\right)=\cdots=\left(\left.T\right|_{V_{i}}\right)^{m}(v)$ for $v \in V_{i}$. Hence $\left(\left.T\right|_{V_{i}}\right)^{n}(v)=T^{n}(v)=0$, so $\left.T\right|_{V_{i}}$ is nilpotent. Hence by Corollary 8.8, $T^{i}(v)=\left(\left.T\right|_{V_{i}}\right)^{i}(v)=0$ for $v \in V_{i}$, i.e. $T^{i}\left(V_{i}\right)=(0)$.

Since $M(T, \beta)$ (the matrix of T with respect to β) is upper triangular, the entries on the main diagonal are the eigenvalues by Proposition 5.18. Since T is nilpotent, it's only eigenvalue is $0 .\left[T v=\lambda v \Rightarrow T^{n} v=\lambda^{n} v=0 \Rightarrow \lambda=0\right.$.] Hence $M(T, \beta)$ is actually strictly upper triangular:

$$
M(T, \beta)=\left(\begin{array}{ccccc}
0 & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\
0 & 0 & a_{2,3} & \cdots & a_{2, n} \\
0 & 0 & 0 & \cdots & a_{3, n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

The following is a fundamental observation.
Lemma: $T\left(V_{i}\right) \subset V_{i-1}$.
Proof: Let $n \geq i>0$. Let $v=a_{1} v_{1}+\cdots+a_{i} v_{i} \in V_{i}$. Write $u=a_{1} v_{1}+\cdots+a_{i-1} v_{i-1} \in$ V_{i-1}, so that $v=u+a_{i} v_{i}$. Then $T(v)=T(u)+a T\left(v_{i}\right)$. Since V_{i-1} is T-invariant, $T(u) \in V_{i-1}$, and by the matrix displayed above, $T\left(v_{i}\right)=a_{1, i} v_{1}+\cdots+a_{i-1, i} v_{i-1} \in V_{i-1}$. Therefore $T(v)$ is a linear combination of vectors in V_{i-1}, and hence is also.

Solution \# 2: Special case of (b), below.
Solution \# 3: First, $T^{0}\left(V_{0}\right)=\operatorname{Id}((0))=(0)$. [For a less pathological base case, notice $T\left(V_{1}\right)=(0)$ since v_{1} is an eigenvector with eigenvalues 0.] Now, suppose as induc-
tive hypothesis that $T^{i}\left(V_{i}\right)=(0)$ and that $i<n$. Then $T^{i+1}\left(V_{i+1}\right)=T^{i}\left(T\left(V_{i+1}\right)\right) \subset$ $T^{i}\left(V_{i}\right)=(0)$. The only subspace of (0) is (0), so we're done.

Solution \# 4: $T^{i}\left(V_{i}\right)=T^{i-1}\left(T\left(V_{i}\right)\right) \subset T^{i-1}\left(V_{i-1}\right)=T^{i-2} T\left(V_{i-1}\right) \subset T^{i-2}\left(V_{i-2}\right) \subset$ $\cdots \subset T\left(V_{1}\right) \subset V_{0}=(0)$. [This is a less rigorous version of \#3.]

What this means in terms of the matrix of T^{i} is that the first i columns are all zero. (b) Show that $T^{i}\left(V_{j}\right) \subset V_{j-i}$.

Solution: Let $1 \leq j \leq n$ be arbitrary and induct on i. The base case is $i=1$ which is exactly the lemma above. Suppose $T^{i}\left(V_{j}\right) \subset V_{j-i}$, and that $i<n$. Then $T^{i+1}\left(V_{j}\right)=T\left(T^{i}\left(V_{j}\right)\right) \subset T\left(V_{j-i}\right) \subset V_{j-i-1}=V_{j-(i+1)}$. The first containment comes from the inductive hypothesis and the second from another use of the lemma.

What this means in terms of the matrix of T^{i} is that it has zeros on and below the i-th diagonal. (The k-th column is $T^{i}\left(v_{k}\right)$ which is a linear combination of $v_{1} \cdots, v_{k-i}$. That means that the only nonzero entries $a_{j, k}$ occur when $j \leq k-i$, i.e. when the row is i entries higher than the column.)
(c) Let M be strictly upper-triangular and $n \times n$. Define an operator $\mathbf{F}^{n} \rightarrow \mathbf{F}^{n}$ to be the operator whose matrix (with respect to the standard basis) is M. We claim that M is nilpotent.

If $\mathbf{F}=\mathbf{C}$, this is automatic, since the only eigenvalue is 0 , and all such operators on \mathbf{C}^{n} are nilpotent. (However, one can prove it in general in various ways E.g., define $V_{i}=\operatorname{Span}\left(e_{1}, \cdots, e_{i}\right)$ as above and show that $T\left(V_{i}\right) \subset V_{i-1}$, hence $T^{n}(V)=T^{n}\left(V_{n}\right) \subset$ (0) by reasoning identical to that in (a).)

Hence the analysis in (b) applies to our operator, and in fact the observation about the form of the matrix for T^{i} in (b) applies exactly to give us what we want. Composing operators corresponds to multiplying matrices, so M^{i} has zeros on and below the i-th diagonal.

Note in particular that $M^{n}=0$, as expected.
(d) Let A, B be block diagonal matrices with blocks of matching size:

$$
A=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & A_{n}
\end{array}\right), B=\left(\begin{array}{cccc}
B_{1} & 0 & \cdots & 0 \\
0 & B_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & B_{n}
\end{array}\right)
$$

Suppose that there are only two blocks in each matrix, i.e. $n=2$. Let T_{A} and T_{B} be operators whose matrices are A and B, respectively, with respect to the same basis
γ. Suppose A_{1} is $m \times m$ and that A_{2} is $k \times k$. Hence γ has $m+k$ vectors in it, which we name: $\gamma=\left\{v_{1} \cdots v_{m}, w_{1} \cdots, w_{k}\right\}$.

Consider the composition $\left(T_{A} \circ T_{B}\right)$. Since $V=\operatorname{Span}\left(v_{1}, \cdots, v_{m}\right)$ is both T_{A} and T_{B} invariant, it is $\left(T_{A} \circ T_{B}\right)$ invariant as well. The same goes for the subspace $W=\operatorname{Span}\left(w_{1}, \cdots, w_{k}\right)$. Hence $A B$, which is the matrix of $T_{A} \circ T_{B}$, is block diagonal with blocks of size m and k as well.

Now, if we restrict the operator T_{A} to V, we simply get $T_{A_{1}}$. Similarly, T_{B} restricts to V giving $T_{B_{1}}$. Since $T_{A_{1}} T_{B_{1}}=T_{A_{1} B_{1}}$, we see that $T_{A} T_{B}$ restricts to V as $T_{A_{1} B_{1}}$. This means that the first block in $T_{A} T_{B}$ is $A_{1} B_{1}$. Similarly, $T_{A} T_{B}$ restricts to W as $T_{A_{2} B_{2}}$ implying that the second block is $A_{2} B_{2}$. Hence $\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)\left(\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right)=$ $\left(\begin{array}{cc}A_{1} B_{1} & 0 \\ 0 & A_{2} B_{2}\end{array}\right)$.
One could expand the above proof to the case of many subspaces. Instead, use it as a base case for an induction. Now suppose that the result is true for n. Let A, B be in the above form but with $n+1$ blocks along the diagonal. Notice that we can group this in the following way:

$$
\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
A_{1} & & \cdots & \\
& A_{2} & \cdots & \\
\vdots & \vdots & & \vdots \\
& & \cdots & A_{n}
\end{array}\right) & \\
& & & A_{n+1}
\end{array}\right)\left(\begin{array}{cccc}
B_{1} & & \cdots & \\
& B_{2} & \cdots & \\
\vdots & \vdots & & \vdots \\
& & \cdots & B_{n}
\end{array}\right) .
$$

Therefore, the base case implies that this product is

$$
\left.\left(\begin{array}{cccc}
A_{1} & & \cdots & \\
& A_{2} & \cdots & \\
\vdots & \vdots & & \vdots \\
& & \cdots & A_{n}
\end{array}\right)\left(\begin{array}{cccc}
B_{1} & & \cdots & \\
& B_{2} & \cdots & \\
\vdots & \vdots & & \vdots \\
& & \cdots & B_{n}
\end{array}\right) \quad \begin{array}{|l}
A_{n+1} B_{n+1}
\end{array}\right)
$$

and now the inductive hypothesis, applied to the upper left block (which is a product of two block diagonal matrices with n blocks), gives the desired product

$$
\left(\begin{array}{cccc}
A_{1} B_{1} & & \cdots & \\
& A_{2} B_{2} & \cdots & \\
\vdots & \vdots & & \vdots \\
& & \cdots & A_{n+1} B_{n+1}
\end{array}\right)
$$

(e) Let L be an operator on a complex space V of dimension n. Let $V=U_{\lambda_{1}} \oplus \cdots \oplus U_{\lambda_{m}}$ be the generalized eigenspace decomposition promised by the Jordan theorem. Write
$e_{i}=\operatorname{dim} U_{\lambda_{i}}$. If we concatenate bases from each U_{λ} to form a basis for V, we have the "weak" Jordan form consisting of a matrix M which is block diagonal with m blocks. Each block M_{i} is upper triangular with λ_{i} on the diagonal.

Now consider the matrix product

$$
*\left(M-\lambda_{1} I\right)^{e_{1}} \cdots\left(M-\lambda_{n} I\right)^{e_{n}}
$$

By part (d) we can consider this product one block at a time. That is, the above product $\left({ }^{*}\right)$ is block diagonal with m blocks. The i-th block is

$$
* *\left(M_{i}-\lambda_{1} I\right)^{e_{1}} \cdots\left(M_{i}-\lambda_{i} I\right)^{e_{i}} \cdots\left(M_{i}-\lambda_{n} I\right)^{e_{n}}
$$

But notice that $M_{i}-\lambda_{i} I$ is strictly upper triangular of size $e_{i} \times e_{i}$. It follows from (c) that $\left(M_{i}-\lambda_{i} I\right)^{e_{i}}=0$. Hence the entire product $\left({ }^{* *}\right)$ is 0 .

This is true for each of the blocks in $\left(^{*}\right)$, so the entire product is 0 .

[^0]: ${ }^{1}$ Remember this type of argument, it's very typical minimal polynomial argument

[^1]: ${ }^{3}$ Remember this argument, it's a classical example of a division-algorithm question!

